Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.144
1.
Epigenetics ; 19(1): 2348840, 2024 Dec.
Article En | MEDLINE | ID: mdl-38716769

To explore the role of lncRNA m6A methylation modification in aqueous humour (AH) of patients with pseudoexfoliation glaucoma (PXG). Patients with open-angle PXG under surgery from June 2021 to December 2021 were selected. Age- and gender-matched patients with age-related cataract (ARC) were chosen as control. Patients underwent detailed ophthalmic examinations. 0.05-0.1 ml AH were extracted during surgery for MeRIP-Seq and RNA-Seq. Joint analysis was used to screen lncRNAs with differential m6A methylation modification and expression. Online software tools were used to draw lncRNA-miRNA-mRNA network (ceRNA). Expression of lncRNAs and mRNAs was confirmed using quantitative real-time PCR. A total of 4151 lncRNAs and 4386 associated m6A methylation modified peaks were identified in the PXG group. Similarly, 2490 lncRNAs and 2595 associated m6A methylation modified peaks were detected in the control. Compared to the ARC group, the PXG group had 234 hypermethylated and 402 hypomethylated m6A peaks, with statistically significant differences (| Fold Change (FC) |≥2, p < 0.05). Bioinformatic analysis revealed that these differentially methylated lncRNA enriched in extracellular matrix formation, tight adhesion, TGF- ß signalling pathway, AMPK signalling pathway, and MAPK signalling pathway. Joint analysis identified 10 lncRNAs with differential m6A methylation and expression simultaneously. Among them, the expression of ENST000000485383 and ROCK1 were confirmed downregulated in the PXG group by RT-qPCR. m6A methylation modification may affect the expression of lncRNA and participate in the pathogenesis of PXG through the ceRNA network. ENST000000485383-hsa miR592-ROCK1 May be a potential target pathway for further investigation in PXG m6A methylation.


Adenosine , Exfoliation Syndrome , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Female , Exfoliation Syndrome/genetics , Exfoliation Syndrome/metabolism , Male , Adenosine/analogs & derivatives , Adenosine/metabolism , Adenosine/genetics , Aged , Aqueous Humor/metabolism , Gene Regulatory Networks , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism , Middle Aged , RNA, Messenger/genetics , RNA, Messenger/metabolism , DNA Methylation , Glaucoma, Open-Angle/genetics , Glaucoma, Open-Angle/metabolism
2.
Zool Res ; 45(3): 535-550, 2024 May 18.
Article En | MEDLINE | ID: mdl-38747058

Proper regulation of synapse formation and elimination is critical for establishing mature neuronal circuits and maintaining brain function. Synaptic abnormalities, such as defects in the density and morphology of postsynaptic dendritic spines, underlie the pathology of various neuropsychiatric disorders. Protocadherin 17 (PCDH17) is associated with major mood disorders, including bipolar disorder and depression. However, the molecular mechanisms by which PCDH17 regulates spine number, morphology, and behavior remain elusive. In this study, we found that PCDH17 functions at postsynaptic sites, restricting the number and size of dendritic spines in excitatory neurons. Selective overexpression of PCDH17 in the ventral hippocampal CA1 results in spine loss and anxiety- and depression-like behaviors in mice. Mechanistically, PCDH17 interacts with actin-relevant proteins and regulates actin filament (F-actin) organization. Specifically, PCDH17 binds to ROCK2, increasing its expression and subsequently enhancing the activity of downstream targets such as LIMK1 and the phosphorylation of cofilin serine-3 (Ser3). Inhibition of ROCK2 activity with belumosudil (KD025) ameliorates the defective F-actin organization and spine structure induced by PCDH17 overexpression, suggesting that ROCK2 mediates the effects of PCDH17 on F-actin content and spine development. Hence, these findings reveal a novel mechanism by which PCDH17 regulates synapse development and behavior, providing pathological insights into the neurobiological basis of mood disorders.


Actin Cytoskeleton , Cadherins , Dendritic Spines , rho-Associated Kinases , Animals , Dendritic Spines/metabolism , Dendritic Spines/physiology , Mice , Actin Cytoskeleton/metabolism , Cadherins/metabolism , Cadherins/genetics , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , Gene Expression Regulation
3.
J Clin Invest ; 134(10)2024 Mar 26.
Article En | MEDLINE | ID: mdl-38747285

Transforming growth factor ß (TGF-ß) signaling is a core pathway of fibrosis, but the molecular regulation of the activation of latent TGF-ß remains incompletely understood. Here, we demonstrate a crucial role of WNT5A/JNK/ROCK signaling that rapidly coordinates the activation of latent TGF-ß in fibrotic diseases. WNT5A was identified as a predominant noncanonical WNT ligand in fibrotic diseases such as systemic sclerosis, sclerodermatous chronic graft-versus-host disease, and idiopathic pulmonary fibrosis, stimulating fibroblast-to-myofibroblast transition and tissue fibrosis by activation of latent TGF-ß. The activation of latent TGF-ß requires rapid JNK- and ROCK-dependent cytoskeletal rearrangements and integrin αV (ITGAV). Conditional ablation of WNT5A or its downstream targets prevented activation of latent TGF-ß, rebalanced TGF-ß signaling, and ameliorated experimental fibrosis. We thus uncovered what we believe to be a novel mechanism for the aberrant activation of latent TGF-ß in fibrotic diseases and provided evidence for targeting WNT5A/JNK/ROCK signaling in fibrotic diseases as a new therapeutic approach.


Fibroblasts , Fibrosis , Transforming Growth Factor beta , Wnt-5a Protein , rho-Associated Kinases , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , Animals , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , Mice , Humans , Fibroblasts/metabolism , Fibroblasts/pathology , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , Scleroderma, Systemic/pathology , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/genetics , Mice, Knockout , Wnt Proteins/metabolism , Wnt Proteins/genetics , MAP Kinase Signaling System , Myofibroblasts/metabolism , Myofibroblasts/pathology , Signal Transduction , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/genetics
4.
ACS Biomater Sci Eng ; 10(5): 3069-3085, 2024 May 13.
Article En | MEDLINE | ID: mdl-38578110

Parkinson's disease (PD) is the second most common neurodegenerative disorder worldwide. Drug delivery to the brain through the blood-brain barrier (BBB) is a significant challenge in PD treatment. Exosomes, which can efficiently traverse the BBB, which many drugs cannot penetrate, are ideal natural carriers for drug delivery. In this study, the BBB shuttle peptide was modified on the exosome surfaces. Three types of exosomes were constructed, each modified with a distinct peptide (RVG29, TAT, or Ang2) and loaded with miR-133b. The safety and brain-targeting capabilities of these peptide-modified exosomes were then evaluated. Finally, the mechanism by which RVG29-Exo-133b regulates the RhoA-ROCK signaling pathway was investigated. The findings indicate that the three peptide-modified exosomes were adequately tolerated, safe, and effectively assimilated in vivo and ex vivo, with RVG29 exhibiting superior targeting to the brain. Furthermore, RVG29-Exo-133b decreased the phosphorylation level of the Tau protein by targeting the RhoA-ROCK signaling pathway. It also enhanced the motor function in mice with PD, thereby reducing the degree of depression, improving dopaminergic neuron function, and attenuating 6-OHDA-induced nerve damage. In this study, we developed a stable drug delivery mechanism that targets the intracerebral region using exosomes. Furthermore, a novel strategy was developed to manage PD and can potentially serve as a preclinical basis for utilizing exosomes in the diagnosis and treatment of neurodegenerative conditions.


Exosomes , MicroRNAs , Parkinson Disease , Signal Transduction , rho-Associated Kinases , rhoA GTP-Binding Protein , Exosomes/metabolism , Animals , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , MicroRNAs/metabolism , MicroRNAs/genetics , Parkinson Disease/metabolism , Parkinson Disease/genetics , rhoA GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/genetics , Mice , Male , Mice, Inbred C57BL , Humans , Peptides/metabolism , Blood-Brain Barrier/metabolism
5.
Sci Rep ; 14(1): 9012, 2024 04 19.
Article En | MEDLINE | ID: mdl-38641671

To better understand molecular aspects of equine endometrial function, there is a need for advanced in vitro culture systems that more closely imitate the intricate 3-dimensional (3D) in vivo endometrial structure than current techniques. However, development of a 3D in vitro model of this complex tissue is challenging. This study aimed to develop an in vitro 3D endometrial tissue (3D-ET) with an epithelial cell phenotype optimized by treatment with a Rho-associated protein kinase (ROCK) inhibitor. Equine endometrial epithelial (eECs) and mesenchymal stromal (eMSCs) cells were isolated separately, and eECs cultured in various concentrations of Rock inhibitor (0, 5, 10 µmol) in epithelial medium (EC-medium) containing 10% knock-out serum replacement (KSR). The optimal concentration of Rock inhibitor for enhancing eEC proliferation and viability was 10 µM. However, 10 µM Rock inhibitor in the 10% KSR EC-medium was able to maintain mucin1 (Muc1) gene expression for only a short period. In contrast, fetal bovine serum (FBS) was able to maintain Muc1 gene expression for longer culture durations. An in vitro 3D-ET was successfully constructed using a collagen-based scaffold to support the eECs and eMSCs. The 3D-ET closely mimicked in vivo endometrium by displaying gland-like eEC-derived structures positive for the endometrial gland marker, Fork headbox A2 (FOXA2), and by mimicking the 3D morphology of the stromal compartment. In addition, the 3D-ET expressed the secretory protein MUC1 on its glandular epithelial surface and responded to LPS challenge by upregulating the expression of the interleukin-6 (IL6) and prostaglandin F synthase (PGFS) genes (P < 0.01), along with an increase in their secretory products, IL-6 (P < 0.01) and prostaglandin F2alpha (PGF2α) (P < 0.001) respectively. In the future, this culture system can be used to study both normal physiology and pathological processes of the equine endometrium.


Tissue Engineering , rho-Associated Kinases , Female , Animals , Horses , Cells, Cultured , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism , Endometrium/metabolism , Epithelial Cells/metabolism , Collagen/metabolism , Dinoprost/metabolism
6.
J Cell Mol Med ; 28(8): e18153, 2024 Apr.
Article En | MEDLINE | ID: mdl-38568071

The small GTPase RhoA and the downstream Rho kinase (ROCK) regulate several cell functions and pathological processes in the vascular system that contribute to the age-dependent risk of cardiovascular disease, including endothelial dysfunction, excessive permeability, inflammation, impaired angiogenesis, abnormal vasoconstriction, decreased nitric oxide production and apoptosis. Frailty is a loss of physiological reserve and adaptive capacity with advanced age and is accompanied by a pro-inflammatory and pro-oxidative state that promotes vascular dysfunction and thrombosis. This review summarises the role of the RhoA/Rho kinase signalling pathway in endothelial dysfunction, the acquisition of the pro-thrombotic state and vascular ageing. We also discuss the possible role of RhoA/Rho kinase signalling as a promising therapeutic target for the prevention and treatment of age-related cardiovascular disease.


Cardiovascular Diseases , Thrombosis , Vascular Diseases , Humans , rho-Associated Kinases/genetics , Endothelial Cells
7.
Zhen Ci Yan Jiu ; 49(4): 367-375, 2024 Apr 25.
Article En, Zh | MEDLINE | ID: mdl-38649204

OBJECTIVES: To investigate the effect of electroacupuncture (EA) on Rho/Rho-associated coiled-coil-forming kinases (ROCK) signaling pathway of uterus tissue in rats with dysmenorrhea, so as to explore the underlying mechanism of EA treating primary dysmenorrhea (PD) and uterine smooth muscle spasm, and to observe whether there is a difference in the effect of meridian acupoints in Conception Vessel (CV) and Governer Vessel (GV). METHODS: Sixty female SD rats were randomly divided into saline, model, CV, GV, and non-acupoint groups, with 12 rats in each group. The dysmenorrhea model was established by subcutaneous injection of estradiol diphenhydrate combined with intraperitoneal injection of oxytocin (OT). EA (2 Hz) was applied to "Qihai" (CV6) and "Zhongji" (CV3) for CV group, "Mingmen" (GV4) and "Yaoshu" (GV2) for GV group, "non-acupoint 1" and "non-acupoint 3" on the left side for non-acupoint group, and manual acupuncture was applied to "Guanyuan" (CV4) for CV group, "Yaoyangguan" (GV3) for GV group, "non-acupoint 2" on the left side for non-acupoint group. The treatment was conducted for 20 min each time, once daily for 10 days. The writhing score was evaluated. The smooth myoelectric signals of rats' uterus in vivo were recorded by multi-channel physiological recorder. The uterine histopathological changes were observed by HE staining. The contents of prostaglandin F2α (PGF2α), OT and calcium ion (Ca2+) in uterine tissue of rats were detected by ELISA. The protein and mRNA expression levels of smooth muscle 22-α (SM22-α), RhoA and ROCKⅡ in uterine tissue were detected by Western blot and fluorescence quantitative PCR, respectively. RESULTS: Compared with the saline group, the writhing score of rats in the model group was increased (P<0.01), the amplitude voltage of uterine smooth muscle in vivo was elevated (P<0.01), the contents of PGF2α, OT and Ca2+, the protein and mRNA expression of SM22-α, RhoA and ROCK Ⅱ in uterine tissue were all increased (P<0.01). Compared with the model and the non-acupoint groups, the writhing scores of the CV and the GV groups were decreased (P<0.01, P<0.05), the amplitude voltage of uterine smooth muscle was decreased (P<0.01), the contents of PGF2α, OT and Ca2+ in uterine tissue were decreased (P<0.01, P<0.05), and the protein expression and mRNA expression of SM22-α, RhoA and ROCKⅡ in uterine tissue were decreased (P<0.01, P<0.05). HE staining showed extensive exfoliation of uterine intima with severe edema and increased glandular secretion in the model group, which was alleviated in the CV and GV groups. CONCLUSIONS: EA at acupoints of CV and GV can significantly reduce the writhing score, uterine smooth muscle amplitude voltage, pathological injury degree of uterus, and relieve spasm of uterine smooth muscle in dysmenorrhea rats, which may be related to its effect in regulating PGF2α and OT contents, inhibiting the Rho/ROCK signaling pathway, and reducing the SM22-α, RhoA, ROCKⅡ protein and mRNA expression, and Ca2+ content in uterine tissue.


Acupuncture Points , Dysmenorrhea , Electroacupuncture , Rats, Sprague-Dawley , Signal Transduction , Uterus , rho-Associated Kinases , Animals , Female , Dysmenorrhea/therapy , Dysmenorrhea/metabolism , Dysmenorrhea/genetics , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , Rats , Humans , Uterus/metabolism , Muscle, Smooth/metabolism , Spasm/therapy , Spasm/genetics , Spasm/metabolism , Spasm/physiopathology
8.
Gene ; 905: 148232, 2024 May 05.
Article En | MEDLINE | ID: mdl-38309317

The lncRNA plays an important role in tumorigenesis and the progression of renal cell carcinoma (RCC). LINC00645 is one of the most different expressed lncRNA between RCC and normal renal tissue. However, the regulatory mechanism of LINC00645 in RCC remains unknown. Our results indicated that LINC00645 inhibited RCC proliferation, migration, and invasion. Mechanistically, HNRNPA2B1 directly bound to ROCK1 mRNA and strengthened its stability. LINC00645 competitively bound to the RRM1 domain, which is responsible for interacting with ROCK1 mRNA, reducing ROCK1 mRNA level by affecting posttranscriptional destabilization. The expression of LINC00645 was significantly reduced in RCC cells, significantly upregulating ROCK1 by abolishing the interaction with HNRNPA2B1, finally promoting RCC proliferation, migration, and invasion. Moreover, RCC cells with lower LINC00645 expression were more sensitive to the ROCK1 inhibitor Y-27632. Our study indicates that decreased expression of LINC00645 promotes the RCC progression via HNRNPA2B1/ROCK1 axis, providing a promising treatment strategy for RCC patients with decreased LINC00645 expression.


Carcinoma, Renal Cell , Kidney Neoplasms , RNA Stability , RNA, Long Noncoding , rho-Associated Kinases , Humans , Carcinoma, Renal Cell/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Kidney Neoplasms/pathology , rho-Associated Kinases/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics
9.
Zhongguo Zhong Yao Za Zhi ; 49(1): 185-196, 2024 Jan.
Article Zh | MEDLINE | ID: mdl-38403351

This study investigated the effect of trametenolic acid(TA) on the migration and invasion of human hepatocellular carcinoma HepG2.2.15 cells by using Ras homolog gene family member C(RhoC) as the target and probed into the mechanism, aiming to provide a basis for the utilization of TA. The methyl thiazolyl tetrazolium(MTT) assay was employed to examine the proliferation of HepG2.2.15 cells exposed to TA, and scratch and Transwell assays to examine the cell migration and invasion. The pull down assay was employed to determine the impact of TA on RhoC GTPase activity. Western blot was employed to measure the effect of TA on the transport of RhoC from cytoplasm to cell membrane and the expression of RhoC/Rho-associated kinase 1(ROCK1)/myosin light chain(MLC)/matrix metalloprotease 2(MMP2)/MMP9 pathway-related proteins. RhoC was over-expressed by transient transfection of pcDNA3.1-RhoC. The changes of F-actin in the cytoskeleton were detected by Laser confocal microscopy. In addition, the changes of cell migration and invasion, expression of proteins in the RhoC/ROCK1/MLC/MMP2/MMP9 pathway, and RhoC GTPase activity were detected. The subcutaneously transplanted tumor model of BALB/c nude mice and the low-, medium-, and high-dose(40, 80, and 120 mg·kg~(-1), respectively) TA groups were established and sorafenib(20 mg·kg~(-1)) was used as the positive control. The tumor volume and weight in each group were measured, and the expression of related proteins in the tumor tissue was determined by Western blot. The results showed that TA inhibited the proliferation of HepG2.2.15 cells in a concentration-dependent manner, with the IC_(50) of 66.65 and 23.09 µmol·L~(-1) at the time points of 24 and 48 h, respectively. The drug administration groups had small tumors with low mass. The tumor inhibition rates of sorafenib and low-, medium-and high-dose TA were 62.23%, 26.48%, 55.45%, and 62.36%, respectively. TA reduced migrating and invading cells and inhibited RhoC protein expression and RhoC GTPase activity in a concentration-dependent manner, dramatically reducing RhoC and membrane-bound RhoC GTPase. The expression of ROCK1, MLC, p-MLC, MMP2, and MMP9 downstream of RhoC can be significantly inhibited by TA, as confirmed in both in vitro and in vivo experiments. After HepG2.2.15 cells were transfected with pcDNA3.1-RhoC to overexpress RhoC, TA down-regulated the protein levels of RhoC, ROCK1, MLC, p-MLC, MMP2, and MMP9 and decreased the activity of RhoC GTPase, with the inhibition level comparable to that before overexpression. In summary, TA can inhibit the migration and invasion of HepG2.2.15 cells. It can inhibit the RhoC/ROCK1/MLC/MMP2/MMP9 signaling pathway by suppressing RhoC GTPase activity and down-regulating RhoC expression. This study provides a new idea for the development of autophagy modulators targeting HSP90α to block the proliferation and inhibit the invasion and migration of hepatocellular carcinoma cells via multiple targets of active components in traditional Chinese medicines.


Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Humans , rhoC GTP-Binding Protein/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Matrix Metalloproteinase 9/metabolism , rho GTP-Binding Proteins/genetics , rho GTP-Binding Proteins/metabolism , Matrix Metalloproteinase 2/metabolism , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism , Sorafenib , Mice, Nude , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Cell Line, Tumor , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Cell Movement , Cell Proliferation
10.
Nat Commun ; 15(1): 446, 2024 Jan 10.
Article En | MEDLINE | ID: mdl-38199985

Patients with corticosteroid-refractory acute graft-versus-host disease (aGVHD) have a low one-year survival rate. Identification and validation of novel targetable kinases in patients who experience corticosteroid-refractory-aGVHD may help improve outcomes. Kinase-specific proteomics of leukocytes from patients with corticosteroid-refractory-GVHD identified rho kinase type 1 (ROCK1) as the most significantly upregulated kinase. ROCK1/2 inhibition improved survival and histological GVHD severity in mice and was synergistic with JAK1/2 inhibition, without compromising graft-versus-leukemia-effects. ROCK1/2-inhibition in macrophages or dendritic cells prior to transfer reduced GVHD severity. Mechanistically, ROCK1/2 inhibition or ROCK1 knockdown interfered with CD80, CD86, MHC-II expression and IL-6, IL-1ß, iNOS and TNF production in myeloid cells. This was accompanied by impaired T cell activation by dendritic cells and inhibition of cytoskeletal rearrangements, thereby reducing macrophage and DC migration. NF-κB signaling was reduced in myeloid cells following ROCK1/2 inhibition. In conclusion, ROCK1/2 inhibition interferes with immune activation at multiple levels and reduces acute GVHD while maintaining GVL-effects, including in corticosteroid-refractory settings.


Graft vs Host Disease , rho-Associated Kinases , Humans , Animals , Mice , rho-Associated Kinases/genetics , Graft vs Host Disease/drug therapy , Signal Transduction , NF-kappa B , Adrenal Cortex Hormones/pharmacology , Adrenal Cortex Hormones/therapeutic use
11.
Front Biosci (Landmark Ed) ; 29(1): 6, 2024 01 12.
Article En | MEDLINE | ID: mdl-38287795

BACKGROUND: Ferroptosis, a distinct iron-dependent form of regulated cell death, is induced by severe lipid peroxidation due to reactive oxygen species (ROS) generation. Breast cancer patient survival is correlated with the tumor-suppressing properties of Rho guanosine triphosphatase hydrolase enzyme (GTPase)-activating protein 6 (ARHGAP6). This study investigates the impact and mechanisms of ARHGAP6 on ferroptosis in breast cancer. METHODS: Using quantitative RT-PCR, Western blotting, and immunofluorescence staining, ARHGAP6 expression was detected in a gene expression dataset, cancer tissue samples, and cells. ARHGAP6 was overexpressed or silenced in breast cancer cell lines. Cell proliferation was measured using 5-ethynyl-2-deoxyuridine (EdU) assay, and cell death rate was determined using LDH cytotoxicity assay. As indicators of ferroptosis, Fe2+ ion content, lipid ROS, glutathione peroxidase 4 (GPX4), ChaC glutathione specific gamma-glutamylcyclotransferase 1 (CHAC1), prostaglandin-endoperoxide synthase 2 (PTGS2), solute carrier family 7 member 11 (SLC7A11), and acyl-CoA synthetase long chain family member 4 (ACSL4) levels were evaluated. RESULTS: ARHGAP6 was obviously downregulated in cancer tissues and cells. ARHGAP6 overexpression decreased cell proliferation, elevated cell death and lipid ROS, decreased GPX4 and SLC7A11, increased PTGS2, ACSL4, and CHAC1, and inhibited RhoA/ROCK1 and p38 MAPK signaling in cancer cells. ARHGAP6 knockdown exerted opposite effects to those of ARHGAP6 overexpression. p38 signaling suppression reversed the effect of ARHGAP6 knockdown on ferroptosis, while RhoA/ROCK1 signaling inhibition compromised the effect of ARHGAP6 on p38 MAPK signaling. In mice models, ARHGAP6 together with the ferroptosis inducer RSL3 cooperatively enhanced ferroptosis and inhibited tumor growth of cancer cells. ARHGAP6 mRNA level was positively correlated with that of ferroptosis indicators in tumor tissues. CONCLUSIONS: This study revealed that ARHGAP6 inhibited tumor growth of breast cancer by inducing ferroptosis via RhoA/ROCK1/p38 MAPK signaling. Integrating ARHGAP6 with ferroptosis-inducing agents may be a promising therapeutic strategy for breast cancer treatment.


Breast Neoplasms , Ferroptosis , GTPase-Activating Proteins , Animals , Female , Humans , Mice , Breast Neoplasms/genetics , Cyclooxygenase 2 , Ferroptosis/genetics , GTPase-Activating Proteins/genetics , Lipids , p38 Mitogen-Activated Protein Kinases/genetics , Reactive Oxygen Species , rho-Associated Kinases/genetics
12.
J Physiol Sci ; 74(1): 5, 2024 Jan 31.
Article En | MEDLINE | ID: mdl-38297223

BACKGROUND: Sepsis-induced acute lung injury (ALI) accounts for about 40% of ALI, accompanied by alveolar epithelial injury. The study aimed to reveal the role of circular RNA_0114428 (circ_0114428) in sepsis-induced ALI. METHODS: Human pulmonary alveolar epithelial cells (HPAEpiCs) were treated with lipopolysaccharide (LPS) to mimic a sepsis-induced ALI cell model. RNA expression of circ_0114428, miR-574-5p and Rho-associated coiled-coil containing protein kinase 2 (ROCK2) was detected by qRT-PCR. Protein expression was checked by Western blotting. Cell viability, proliferation and apoptosis were investigated by cell counting kit-8, 5-Ethynyl-29-deoxyuridine (EdU) and flow cytometry analysis, respectively. The levels of pro-inflammatory factors were detected by enzyme-linked immunosorbent assay (ELISA). Oxidative stress was analyzed by lipid peroxidation Malondialdehyde (MDA) and Superoxide Dismutase (SOD) activity detection assays. The interplay among circ_0114428, miR-574-5p and ROCK2 was identified by dual-luciferase reporter, RNA pull-down and RNA immunoprecipitation assays. RESULTS: Circ_0114428 and ROCK2 expression were significantly increased, but miR-574-5p was decreased in blood samples from sepsis patients and LPS-stimulated HPAEpiCs. LPS treatment led to decreased cell viability and proliferation and increased cell apoptosis, inflammation and oxidative stress; however, these effects were relieved after circ_0114428 knockdown. Besides, circ_0114428 acted as a miR-574-5p sponge and regulated LPS-treated HPAEpiC disorders through miR-574-5p. Meanwhile, ROCK2 was identified as a miR-574-5p target, and its silencing protected against LPS-induced cell injury. Importantly, circ_0114428 knockdown inhibited ROCK2 production by interacting with miR-574-5p. CONCLUSION: Circ_0114428 knockdown protected against LPS-induced HPAEpiC injury through miR-574-5p/ROCK2 axis, providing a novel therapeutic target in sepsis-induced ALI.


Lung Injury , MicroRNAs , Sepsis , Humans , Alveolar Epithelial Cells , Lipopolysaccharides/pharmacology , rho-Associated Kinases/genetics , RNA, Circular/genetics , Apoptosis , Sepsis/genetics , MicroRNAs/genetics , Cell Proliferation
13.
Adv Clin Exp Med ; 33(3): 247-259, 2024 Mar.
Article En | MEDLINE | ID: mdl-37486699

BACKGROUND: The tolerance of cervical cancer to radiotherapy is a major factor affecting treatment outcomes. The miR-214-5p is involved in the regulation of biological processes such as tumor proliferation and metastasis. OBJECTIVES: The aim of the study was to explore the role of miR-214-5p and Rho-associated coiled-coil containing protein kinase 1 (ROCK1) in cervical cancer and their response to radiotherapy in cervical cancer patients. MATERIAL AND METHODS: Fifty-three cervical cancer tissue samples were collected to analyze the level of miR-214-5p in patients with different responses to radiotherapy. Cervical cancer cell lines with radiation resistance were selected to explore the role of miR-214-5p in radiosensitivity. The wound healing, transwell migration, clone formation assay, and in vivo analysis were utilized to evaluate the effect of miR-214-5p on the radiation sensitivity of cervical cancer cells. RESULTS: Patients with poor radiotherapy responses demonstrated low levels of miR-214-5p. The upregulation of miR-214-5p decreased migration and invasion ability of radiotherapy-resistant cells. The bioinformatic analysis showed that ROCK1 is a candidate target gene of miR-214-5p, and this was confirmed with dual luciferase reporter assay showing that miR-214-5p directly interacts with the 3'untranslated region (3'UTR) of ROCK1. Decreased ROCK1 improved the radiosensitivity of cervical cancer in vitro and in vivo, and the overexpression of ROCK1 decreased the radiosensitivity effect of miR-214-5p in cervical cancer cells. CONCLUSIONS: The miR-214-5p can regulate the radiation sensitivity of cervical cancer cells by targeting the mRNA of ROCK1 and regulating its expression.


MicroRNAs , Uterine Cervical Neoplasms , Female , Humans , MicroRNAs/genetics , Uterine Cervical Neoplasms/pathology , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Radiation Tolerance , Gene Expression Regulation, Neoplastic , Cell Movement/genetics
14.
Life Sci ; 336: 122317, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-38040245

Interstitial cystitis (IC), also called painful bladder syndrome (PBS), is 2 to 5 times more common in women than in men, yet its cause and pathogenesis remain unclear. In our study using the cyclophosphamide (CYP)-induced mouse model of cystitis, histological evaluation of the urinary bladder (UB) lamina propria (LP) showed immune cell infiltrations, indicating moderate to severe inflammation. In this study, we noticed a differential expression of a subset of microRNAs (miRs) in the UB cells (UBs) of CYP-induced cystitis as compared to the control. UB inflammatory scores and inflammatory signaling were also elevated in CYP-induced cystitis as compared to control. We identified eight UBs miRs that exhibited altered expression after CYP induction and are predicted to have a role in inflammation and smooth muscle function (miRs-34c-5p, -34b-3p, -212-3p, -449a-5p, -21a-3p, -376b-3p, -376b-5p and - 409-5p). Further analysis using ELISA for inflammatory markers and real-time PCR (RT-PCR) for differentially enriched miRs identified miR-34c as a potential target for the suppression of UB inflammation in cystitis. Blocking miR-34c by antagomir ex vivo reduced STAT3, TGF-ß1, and VEGF expression in the UBs, which was induced during cystitis as compared to control. Interestingly, miR-34c inhibition also downregulated ROCK2 but elevated ROCK1 expression in bladder and detrusor cells. Thus, the present study shows that targeting miR-34c can mitigate the STAT3, TGF-ß, and VEGF, inflammatory signaling in UB, and suppress ROCK2 expression in UBs to effectively suppress the inflammatory response in cystitis. This study highlights miR-34c as a potential biomarker and/or serves as the basis for new therapies for the treatment of cystitis.


Cystitis, Interstitial , Cystitis , MicroRNAs , Male , Mice , Animals , Humans , Female , Vascular Endothelial Growth Factor A/metabolism , Cystitis/chemically induced , Urinary Bladder/metabolism , Cystitis, Interstitial/genetics , Cystitis, Interstitial/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cyclophosphamide/adverse effects , Inflammation/metabolism , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism
15.
Reprod Biol ; 24(1): 100826, 2024 Mar.
Article En | MEDLINE | ID: mdl-37992590

Extracellular matrix protein 1 (ECM1) is a glycoprotein that may be a key player in tumorigenesis and tumor progression. However, knowledge regarding the role of ECM1 in endometriosis (EM) is still lacking. Microarray analyses were performed to compare the mRNA expression patterns between paired EU tissues and ectopic endometrial (EC) tissues (n = 4) from EM patients. ECM1 expression was significantly increased in the eutopic endometrial (EU) tissues than paired EC tissues of endometriotic patients and normal endometrial (NE) tissues of controls without EM. Blocking ECM1 with siRNA attenuated the migration and invasion of hEM15A cells and modified the distribution of the F-actin cytoskeleton. We conducted microarray analyses and bioinformatics analyses to investigate the differentially expressed genes (DEGs) and related pathways regulated by ECM1. A total of 161 DEGs between the siECM1 and the negative control (siNC) treatments were identified, consisting of 79 downregulated genes and 82 upregulated genes. Enriched DEGs were associated with 9 gene ontology (GO) terms. Moreover, a protein-protein interaction (PPI) network was constructed for the hub genes and modules. Radixin (RDX) was the second most downregulated gene in the siECM1 group compared with the siNC group. ECM1 knockdown significantly decreased the expression of RDX, RhoC, ROCK1, N-cadherin and ß-catenin but not ROCK2. ECM1 showed high tissue-specific expression in EU tissues from EM patients, and may contribute to the migration, invasion and reorganization of the F-actin cytoskeleton in eutopic endometrial stromal cells via the RhoC/ROCK1 signaling pathway in EM.


Endometriosis , Silanes , Female , Humans , Cell Movement/genetics , Endometriosis/metabolism , Cells, Cultured , Endometrium/metabolism , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism , Extracellular Matrix Proteins/metabolism
16.
Kaohsiung J Med Sci ; 40(2): 161-174, 2024 Feb.
Article En | MEDLINE | ID: mdl-37873881

Temozolomide (TMZ) resistance presents a significant challenge in the treatment of gliomas. Although lysine demethylase 4A (KDM4A) has been implicated in various cancer-related processes, its role in TMZ resistance remains unclear. This study aims to elucidate the contribution of KDM4A to TMZ resistance in glioma cells and its potential implications for glioma prognosis. We assessed the expression of KDM4A in glioma cells (T98G and U251MG) using qRT-PCR and Western blot assays. To explore the role of KDM4A in TMZ resistance, we transfected siRNA targeting KDM4A into drug-resistant glioma cells. Cell viability was assessed using the CCK-8 assay and the TMZ IC50 value was determined. ChIP assays were conducted to investigate KDM4A, H3K9me3, and H3K36me3 enrichment on the promoters of ROCK2 and HUWE1. Co-immunoprecipitation confirmed the interaction between HUWE1 and ROCK2, and we examined the levels of ROCK2 ubiquitination following MG132 treatment. Notably, T98G cells exhibited greater resistance to TMZ than U251MG cells, and KDM4A displayed high expression in T98G cells. Inhibiting KDM4A resulted in decreased cell viability and a reduction in the TMZ IC50 value. Mechanistically, KDM4A promoted ROCK2 transcription by modulating H3K9me3 levels. Moreover, disruption of the interaction between HUWE1 and ROCK2 led to reduced ROCK2 ubiquitination. Inhibition of HUWE1 or overexpression of ROCK2 counteracted the sensitization effect of si-KDM4A on TMZ responsiveness in T98G cells. Our findings highlight KDM4A's role in enhancing TMZ resistance in glioma cells by modulating ROCK2 and HUWE1 transcription and expression through H3K9me3 and H3K36me3 removal.


Brain Neoplasms , Glioma , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Histones/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Cell Line, Tumor , Glioma/genetics , Methylation , Drug Resistance, Neoplasm/genetics , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism
17.
Cell Biochem Biophys ; 82(1): 127-137, 2024 Mar.
Article En | MEDLINE | ID: mdl-37801199

LAMB3, a major extracellular matrix and basal membrane component, is involved in wound healing. We aimed to understand its role in Asherman's syndrome (AS), which is associated with infertility, by using bioinformatics analysis and cultured endometrial stromal cells (ESCs). MRNAs extracted from tissues obtained from control subjects and patients with severe intrauterine adhesion were sequenced and subjected to bioinformatics analysis and the RhoA/ROCK1/MYL9 pathway was implicated and this subsequently studied using cultured primary ESCs. The effects of overexpression and knockdown and activation and inhibition of LAMB3 on the mesenchymal to myofibroblastic phenotypic transformation of ECCs were assessed using PCR and western blot analysis. Phalloidin was used to localize the actin cytoskeletal proteins. Silencing of LAMB3 reversed the TGF-ß-induced ESC myofibroblast phenotype conversion, whereas overexpression of LAMB3 promoted this process. Activation and silencing of LAMB3 led to remodeling of the ESC cytoskeleton. Overexpression and silencing of LAMB3 caused activation and inhibition of ESCs, respectively. Y-27632 and LPA reversed the activation and inhibition of the RhoA/ROCK1/MYL9 pathway after overexpression and silencing, respectively. These results suggest that LAMB3 can regulate ESC fibrosis transformation and cytoskeleton remodeling via the RhoA/ROCK1/MYL9 pathway. This study provides a potential new target for gene therapy and drug intervention of AS.


Cytoskeleton , rho-Associated Kinases , Humans , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism , Actins/metabolism , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/metabolism , Signal Transduction , Stromal Cells/metabolism , Transforming Growth Factor beta/metabolism , Myosin Light Chains/metabolism
18.
Am J Physiol Cell Physiol ; 326(1): C27-C39, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-37661919

The follicle is the basic structural and functional unit of the ovary in female mammals. The excessive depletion of follicles will lead to diminished ovarian reserve or even premature ovarian failure, resulting in diminished ovarian oogenesis and endocrine function. Excessive follicular depletion is mainly due to loss of primordial follicles. Our analysis of published human ovarian single-cell sequencing results by others revealed a significant increase in rho-associated protein kinase 1 (ROCK1) expression during primordial follicle development. However, the role of ROCK1 in primordial follicle development and maintenance is not clear. This study revealed a gradual increase in ROCK1 expression during primordial follicle activation. Inhibition of ROCK1 resulted in reduced primordial follicle activation, decreased follicular reserve, and delayed development of growing follicles. This effect may be achieved through the HIPPO pathway. The present study indicates that ROCK1 is a key molecule for primordial follicular reserve and follicular development.NEW & NOTEWORTHY ROCK1, one of the Rho GTPases, plays an important role in primordial follicle reserve and follicular development. ROCK1 was primarily expressed in the cytoplasm of oocytes and granulosa cell in mice. Inhibition of ROCK1 significantly reduced the primordial follicle reserve and delayed growing follicle development. ROCK1 regulates primordial follicular reserve and follicle development through the HIPPO signaling pathway. These findings shed new lights on the physiology of sustaining female reproduction.


Oocytes , Ovarian Follicle , Animals , Female , Humans , Mice , Granulosa Cells/metabolism , Mammals , Oogenesis , Ovarian Follicle/metabolism , Ovary/metabolism , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism
19.
FASEB J ; 38(1): e23343, 2024 01.
Article En | MEDLINE | ID: mdl-38071602

Caveolin-1 (CAV1), the main structural component of caveolae, is phosphorylated at tyrosine-14 (pCAV1), regulates signal transduction, mechanotransduction, and mitochondrial function, and plays contrasting roles in cancer progression. We report that CRISPR/Cas9 knockout (KO) of CAV1 increases mitochondrial oxidative phosphorylation, increases mitochondrial potential, and reduces ROS in MDA-MB-231 triple-negative breast cancer cells. Supporting a role for pCAV1, these effects are reversed upon expression of CAV1 phosphomimetic CAV1 Y14D but not non-phosphorylatable CAV1 Y14F. pCAV1 is a known effector of Rho-associated kinase (ROCK) signaling and ROCK1/2 signaling mediates CAV1 promotion of increased mitochondrial potential and decreased ROS production in MDA-MB-231 cells. CAV1/ROCK control of mitochondrial potential and ROS is caveolae-independent as similar results were observed in PC3 prostate cancer cells lacking caveolae. Increased mitochondrial health and reduced ROS in CAV1 KO MDA-MB-231 cells were reversed by knockdown of the autophagy protein ATG5, mitophagy regulator PINK1 or the mitochondrial fission protein Drp1 and therefore due to mitophagy. Use of the mitoKeima mitophagy probe confirmed that CAV1 signaling through ROCK inhibited basal mitophagic flux. Activation of AMPK, a major mitochondrial homeostasis protein inhibited by ROCK, is inhibited by CAV1-ROCK signaling and mediates the increased mitochondrial potential, decreased ROS, and decreased basal mitophagy flux observed in wild-type MDA-MB-231 cells. CAV1 regulation of mitochondrial health and ROS in cancer cells therefore occurs via ROCK-dependent inhibition of AMPK. This study therefore links pCAV1 signaling activity at the plasma membrane with its regulation of mitochondrial activity and cancer cell metabolism through control of mitophagy.


Caveolin 1 , Prostatic Neoplasms , Male , Humans , Caveolin 1/genetics , Caveolin 1/metabolism , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Reactive Oxygen Species/metabolism , Mechanotransduction, Cellular , Mitochondria/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Mitochondrial Proteins/metabolism , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism
20.
Int J Biochem Cell Biol ; 164: 106474, 2023 Nov.
Article En | MEDLINE | ID: mdl-37778694

Resistance to radio and chemotherapy in Glioblastoma (GBM) is correlated with its malignancy, invasiveness, and aggressiveness. The Rho GTPase pathway plays important roles in these processes, but its involvement in the GBM response to genotoxic treatments remains unsolved. Inhibition of this signaling pathway has emerged as a promising approach for the treatment of CNS injuries and diseases, proving to be a strong candidate for therapeutic approaches. To this end, Rho-associated kinases (ROCK), classic downstream effectors of small Rho GTPases, were targeted for pharmacological inhibition using Y-27632 in GBM cells, expressing the wild-type or mutated p53 gene, and exposed to genotoxic stress by gamma ionizing radiation (IR) or cisplatin (PT). The use of the ROCK inhibitor (ROCKi) had opposite effects in these cells: in cells expressing wild-type p53, ROCKi reduced survival and DNA repair capacity (reduction of γH2AX foci and accumulation of strand breaks) after stress promoted by IR or PT; in cells expressing the mutant p53 protein, both treatments promoted longer survival and more efficient DNA repair, responses further enhanced by ROCKi. The target DNA repair mechanisms of ROCK inhibition were, respectively, an attenuation of NHEJ and NER pathways in wild-type p53 cells, and a stimulation of HR and NER pathways in mutant p53 cells. These effects were accompanied by the formation of reactive oxygen species (ROS) induced by genotoxic stress only in mutant p53 cells but potentiated by ROCKi and reversed by p53 knockdown. N-acetyl-L-cysteine (NAC) treatment or Rac1 knockdown completely eliminated ROCKi's p53-dependent actions, since ROCK inhibition specifically elevated Rac-GTP levels only in mutant p53 cells. Combining IR or PT and ROCKi treatments broadens our understanding of the sensitivity and resistance of, respectively, GBM expressing wild-type or mutant p53 to genotoxic agents. Our proposal may be a determining factor in improving the efficiency and assertiveness of CNS antitumor therapies based on ROCK inhibitors. SIGNIFICANCE: The use of ROCK inhibitors in association with radio or chemotherapy modulates GBM resistance and sensitivity depending on the p53 activity, suggesting the potential value of this protein as therapeutic target for tumor pre-sensitization strategies.


Glioblastoma , Humans , Glioblastoma/drug therapy , Glioblastoma/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Reactive Oxygen Species/metabolism , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism , DNA Damage , Cell Line, Tumor
...